
Flint:
A Distributed Computation Engine (over Named Data Networking)

Jacob Zhi
zhi@cs.ucla.edu

Omar Elamri
omar@cs.ucla.edu

Paul Serafimescu
pserafim@cs.ucla.edu

Abstract
Distributed computing for big data is often achieved through
inter-machine communication. The vast majority of dis-
tributed computing systems, such as Spark, use the TCP (or
UDP) and IP protocols to achieve inter-machine communica-
tion. However, this results in an additional layer of indirection,
where data cannot be directly located as there is little corre-
spondence between data and machine name. To showcase
the benefits and practicality of networking over data names
for a distributed computing system, we present Flint, a dis-
tributed computation engine modeled after Spark and utilizing
the Named Data Networking architecture. By exploiting fea-
tures such as multicast data delivery over names, caching, and
data security, we demonstrate the feasibility of a data-centric
paradigm and its potential performance advantages in the
context of cluster computing over a dataset.

1 Introduction

Distributed applications process and ingest thousands of
petabytes worth of data each second. Developers turn to dis-
tributed computation frameworks to process this data. MapRe-
duce, created by Google and Jeffrey Dean in 2004, is one of
the first such systems to try to process data at a large scale [2].
Inspired by this work, Doug Cutting and Mike Cafarella cre-
ated Apache Hadoop, which uses a distributed file system
to perform the MapReduce computation model with fault-
tolerance and scalability built in. Since then, big data systems
have always been designed as traditional applications atop
the standard TCP/IP stack. These systems are now ubiqui-
tous, especially as the primary enabler in the era of machine
learning [3]. However, conventional TCP/IP networking must
add a level of indirection between the location of data and
a client request, or in other words, the name of the machine.
Current solutions, such as DNS map names to machine ad-
dresses rather than the data itself, requiring additional over-
head at the application level to use a service. An example of
this is the NameNode in the Hadoop Distributed File System

(HDFS) [8], which is used to report the locations of data on
various DataNodes. Often, exploiting data locality, load bal-
ancing, and caching in traditional big data systems require
the engineering of explicit mechanisms and subsystems, in-
creasing overhead and complexity of the overall framework.

We propose Flint, a novel distributed data processing en-
gine built using the NDN (Named Domain Networking) archi-
tecture to potentially decrease or eliminate this and other pos-
sible overhead by moving request-response semantics com-
mon in big data systems to the network layer. Flint utilizes a
familiar programming interface similar to big data systems
like Spark [11], providing ease-of-use regardless of the under-
lying paradigm.

Flint is available as open-source software. The source code
and documentation are available at https://github.com/
UCLA-IRL/flint.

2 Background

2.1 Spark

Flint takes heavy inspiration from Apache Spark [11], in par-
ticular the concept of lineage. Spark stores DataFrames as
resilient distributed datasets (RDDs) which are lazily evalu-
ated, and potentially cached when evaluated through a series
of transformations. In Spark, lineage is defined as a directed
acyclic graph (DAG) representing the relationship between
RDDs originating from some base datasets, where nodes rep-
resent RDDs and edges are transformations.

These RDDs are read-only (adhering to the functional pro-
gramming model), distributed and partitioned across a cluster,
and lazily transformed. For example, if an RDD is lost, then
using the lineage graph, Spark can recompute the lost RDD.

The programming interface is also simple. The developer
writes a driver program which launches operations in paral-
lel. The results of computation are eventually collected at
the driver. Spark provides the developer with flexibility in
controlling when RDDs are computed and cached, which can

1

https://github.com/UCLA-IRL/flint
https://github.com/UCLA-IRL/flint


also be handled automatically due to the lazy evaluation of
RDDs.

2.2 Named Data Networking

The Named Data Networking (NDN) [1] network architecture
provides functionality to be used in place of the security, trans-
port, and network delivery layers of the traditional TCP/IP
architecture. In the place of machine names are names for in-
dividual, immutable data packets. These packets are requested
directly by name in an Interest packet, sent from a consumer
to any forwarder through the underlying medium. As needed,
interests are routed by the network towards producers, who re-
ply to an Interest with signed Data. Following this pattern, one
can observe that request-response semantics (such as those
provided by protocols such as an SQL connection or HTTP)
are moved into the lower levels of the network.

NDN names are hierarchical and semantically meaningful,
where each name consists of several name components with a
type and value. This philosophy allows for routing over name
prefixes, where over all prefixes in the forwarding information
base, the longest prefix match of a descendant name is used as
a next hop. This also allows NDN data names to align closely
to application semantics–the paradigm for data organization
and querying often itself follows a hierarchy. Additionally,
semantically-meaningful names allow for obtaining data with-
out any indirection through name lookup–consumers can be
implemented in a fashion where application semantics can
be directly translated into a meaningful name to put in an
Interest.

NDN routing [10] follows a stateful, closed-loop design, in-
tegrating caching and multicast data delivery, thus improving
network performance. When a forwarder receives an Interest,
it first checks whether the Interest can be fulfilled by Data
already present in its content store (cache), resulting in an
immediate reply with data. Otherwise, the forwarder puts the
interest in its pending interest table (PIT). While maintain-
ing the PIT requires maintaining state, it allows for greater
efficiency and a more robust control plane. For example, the
forwarder will avoid sending duplicate interests for the same
data through the same interface if it already exists in PIT.
After the interest is forwarded to the next hop recursively and
data is returned, the data is sent back through all interfaces
with an active PIT entry, allowing the same data response
to serve multiple consumers. A popular package for NDN
forwarding is NFD (the Named Data Networking Forwarding
Daemon) [4], which is utilized in the Flint cluster.

Security [12] is a fundamental design principle in Named
Data Networking. All data is required to be signed, including
keys stored as named data. Thus, named data which holds
a key serves the purpose of a certificate. Similarly to other
PKI (public key infrastructure) designs, verification of NDN
data is a recursive process where the signature of the original
data followed by the signature of the certificate that signed

it is obtained and verified, and so on until a trust anchor key
known a priori is reached. By securing the data and not the
communication channels (as done traditionally in HTTPS and
TLS), the provenance of the data need not be the location it
was obtained, enabling data to be more efficiently cached and
distributed.

3 Design

Flint is designed as a distributed computation engine that per-
forms computation and analysis over sharded datasets using
a cluster of nodes. These datasets are similar to a traditional
tabular dataset. More concretely, Flint processes transforma-
tions over a dataset, turning it into a new dataset to which
further transformations can be recursively applied, forming a
lineage. Such a computation over data can effectively express
various big data tasks, similarly to Spark. Each node does
not necessarily have the complete data due to its size; the
principle of locality guides the design such that each node
should perform requested computations over some subset of
the data it has. Each dataset is divided into shards, where each
shard’s size is on the order of dozens of megabytes. A key
principle for such a distributed computing cluster is that any
available worker should respond to a request for computation
provided they have the ability to complete the request (e.g.,
sufficient hardware resources or the correct shard of data).

3.1 Programming Model

A developer with access to a Flint cluster’s client can write a
program that represents a parallel data task performed across
the client.

The basis of this model is a Dataset object, which repre-
sents a certain view of data stored across the cluster and its
lineage through various transformations. Though the devel-
oper may hold a Dataset object, the object may not yet have
been materialized or computed across the cluster–the design
adheres to the principle of lazy evaluation.

A Dataset object representing a descendant point in the
lineage can be obtained by calling a transformation on a
Dataset object. A transformation call is supplied a callable
(closure) which specifies how the dataset should be changed
to reach this new point in the lineage. For ease of use, methods
created using syntactic sugar applied to the base transforma-
tion method provide a more familiar dataset interface to the
developer, such as the ability to map and filter the dataset.

The developer can also choose to cache a Dataset, which
hints to the cluster that the dataset, at its current lineage,
should be materialized and stored (on the Workers) now.
While Flint can automatically determine good cache points,
such as intermediate Datasets on which different transforma-
tions are subsequently performed, we allow developer the
granular control over adding more such cache points.

2



log = client.create_dataset("app.log")
errors = log.filter(lambda x: x.contains("

ERROR"))
errors.cache()
severity = errors.map(lambda x: 2 if x.

contains("CRITICAL") else 1)
auth_errors = errors.filter(lambda x: x.

contains("403"))
print(auth_errors.collect())

Figure 1: An example of the Flint programming model,
demonstrating the use of transformations and caching to filter
a log dataset.

Figure 2: Diagram showing the bi-directional communication
between different components on each node of the cluster,
including the Client, Driver remote interface (Rem), Driver
object store (OS), Driver lineage manager (LM), Driver ex-
ecutor (Exe), NFD content store (CS), and Worker result store
(RS).

Finally, the developer can call a method to perform a oper-
ation on the Dataset, such as the collect operation. Operations
are computations that have some effect visible to the user. For
example, the collect operation returns the dataset as-is to the
user, allowing them to view and manipulate the final result
locally.

An example demonstrating transformations, caching, and
collection over a Dataset object is listed in Figure 1.

3.2 System Components
Flint’s cluster consists of one Driver node and at least one
Worker node, connected through network infrastructure run-
ning an NDN forwarder supporting in-network caching
through the content store. The client communicates to the clus-
ter via RPC call to the Driver, who then coordinates and plans
the lazy execution and materialization of a distributed dataset.
The Driver talks through the network and reaches a Worker
through interests for certain names (see Subsection 3.3). The
Worker itself determines how to best execute the computa-
tion before doing so and saving the result. These system
components are described in more detail below, and the com-
munication between these components and sub-components
are depicted in Figure 2.

Figure 3: Example of a lineage manager execution plan. The
lineage ending with transformation T 7 is requested to be
materialized. Thus, the lineage ending with transformation
T 3 should be materialized as well.

3.2.1 Driver

The Driver runs its modules described below on a single ma-
chine, using multiprocessing as necessary to accommodate for
simultaneous communication (e.g., to simultaneously provide
objects as well as return a result to the client).

Remote Interface: The remote interface serves as the en-
try point into the driver from the client. Several methods are
exposed through RPC, roughly corresponding to the client
programming interface described in Subsection 3.1. The pri-
mary pattern of the Remote Interface is to dispatch other
modules on the driver via their interface to perform tasks.

Object Store: The object store is used to provide objects
(blobs supplied by the client to the workers), organized by
collection and object ID. An example of an object is the
bytecode corresponding to a callable (closure) for a trans-
formation; upon registration by the client, the bytecode is
stored in the "Transformation" collection with a random ob-
ject ID. The Driver announces the prefix for the object store
to the forwarder, allowing for Workers to reach object store
objects through Interests. As object store names are semanti-
cally meaningful (the prefix followed by the collection and
object ID), Workers can directly retrieve from the object store
without any additional lookups.

Lineage Manager: The lineage manager plans the execu-
tion of a series of transformations when a distributed dataset
is requested to be materialized. As the tree of lineages rooted
at a base dataset may have nodes with multiple children, it is
more efficient to cache an intermediate result where the path
from the root to the tip of the lineage contains such nodes.
A depiction of the task of the lineage manager is shown in
Figure 3. The lineage manager keeps track of every lazily-
requested transformation, and advises the executor on which

3



lineage prefixes to materialize when a Dataset object is cached
or collected.

Executor: The executor is responsible for the materializa-
tion of a Dataset, as well as any requested operations. For a
requested lineage, it sends requests for the transformation at
the shard level to workers using the Dataset protocol. Shard-
ing is transparent to the user; the executor is responsible for
sending requests for all available shards forming the complete
dataset. If the execution results from an operation (such as
collect) it is also responsible for combining and returning the
final data from each shard to the remote interface and hence
the client.

3.2.2 Worker

Each worker operates independently and can perform requests
asynchronously, allowing it to take on simultaneous requests.
Each module described below fires its tasks when needed in a
central event loop.

Handler: The handler is the entry point for each Worker
and contains request handlers for Interests related to the
worker-side of the Dataset protocol. Handler invocations are
short-lived and computational tasks are not done on the han-
dler’s "green thread"; the protocol is designed to not block
subsequent Interests. It is also responsible for reporting which
shards of the base datasets it owns, implicitly through the
announcement of prefixes.

Compute: The compute module performs the necessary
computations to materialize and store transformations done to
a specific shard of the distributed dataset. The compute mod-
ule is designed to be as efficient as possible, i.e., perform as
few transformations in the dataset lineage while maintaining
correctness. It does so by exploiting the caching properties of
NDN as well as previous cache points in any worker’s result
store. Specifically, it tries every path prefix in the transforma-
tion lineage in order from longest to shortest (a path prefix
represents an intermediate state of computation with a few
operations missing at the end of the lineage from the desired
distributed dataset). For every such prefix, it first looks for
the resulting data in its own result store. Then, it checks the
network for the corresponding result name of the path prefix,
according to the dataset protocol. Logically, the latter step
is equivalent to first checking in the network cache (content
store), and then checking the result store of other Workers.
From any intermediate dataset the Worker finds, it performs
the necessary subsequent operations to it before saving the
final result in its result store.

Result Store: The result store saves computed views (re-
sults) of a dataset shard corresponding to transformation lin-
eages. The data is stored in memory for fast retrieval, with
an LRU policy to evict old views, as any evicted view can
be re-requested and computed. Additionally, the result store
further sub-divides the data into segments which fit into the
network MTU (maximum packet size supported by links) in

which the cluster resides, as individual shards are still orders
of magnitude larger than network MTU. When the Worker’s
handler requests a specific result and segment number, the
result store fetches the appropriate segment such that the han-
dler can sign and reply to the Interest with the result data.
Workers do not announce a general prefix for the result store,
instead, results are announced on the level of an individual
result. This ensures the network will only route requests for
results to the Worker which has them.

3.3 Dataset Protocol

The design of any application running on a data-centric net-
work architecture leans heavily on naming conventions, both
for hierarchical semantics and security. In Flint, we exploit
the fundamental concept of lineage and its correspondence to
hierarchy to design the protocol by which distributed datasets
can be requested. To illustrate the protocol, Table 1 overviews
an exemplar request and result name.

In NDN, names are a series TLV (type-length-value) blocks,
each representing a name component. Most name components
are generic-typed, meaning they are an arbitrary sequence of
bytes. We use two other types for delimiting purposes as well
as for their semantic meaning, namely Keyword components
(32=) and Segment components (50=). The Keyword compo-
nents are used to denote different spans in the hierarchy (e.g.,
file path hierarchy versus lineage hierarchy). The Segment
component is used to denote the segment number of the result.

Generally, both the request and the result name consist of
the application prefix followed by the type of interest. A re-
quest interest tells the Worker to begin the computation of
a specific distributed dataset by performing the transforma-
tions, while a result interest requests a piece of the actual
data computed at the behest of a request. Following the type
is the path of the file relative to the root of the distributed
file system, representing the base distributed dataset. Subse-
quently, a number indicates the shard on which to perform the
computation. Two Keyword components follow, indicating
the the start of the lineage hierarchy and the list of transfor-
mations in the lineage respectively. The transformations, in
hierarchy order, are included in the name, represented by the
object ID (UUID) which the Driver’s object store assigned to
the transformation bytecode. An ending Keyword component
serves as an end-cap, such that NDN’s in-network name dis-
covery mechanism will not return a cached dataset with more
transformations applied to it due to the hierarchical scheme.
(Except for the end-cap, distributed dataset requests with a
prefix of another dataset’s transformations applied to it are
also NDN name prefixes to that dataset).

In the case of the result name, a Segment component de-
notes the specific 0-indexed segment number to retrieve, as
data from a distributed Dataset cannot fit within most network
MTUs.

4



Type Name
Request /ndn-compute/request/app.log/5/32=LINEAGE/32=TRANSFORMATIONS/uuid-1/uuid-2/32=END

Response /ndn-compute/response/app.log/5/32=LINEAGE/32=TRANSFORMATIONS/uuid-1/uuid-2/32=END/50=7

Table 1: An example of a request and result name for two consecutive transformations (with object IDs uuid-1 and uuid-2
respectively) on the 5th shard of a log file. The result data name is requesting the 7th segment.

3.3.1 Driver Behavior

When a client requests to cache or collect a dataset, the Driver
will make a requests to the Worker by expressing n Interests
for request names to the connected NDN network, where n
is the number of shards. The request names will include the
file name, shard number, and object ID’s corresponding to the
transformation.

If the Worker requested to collect the dataset, the Driver will
subsequently express Interests for the corresponding result
names for the n shards, retransmitting the Interest as necessary
into the network until actual data (and not a negative acknowl-
edgment) is returned. This change in state indicates that the
Worker is finished computing the result. Then, the Driver will
iterate over all s(n) segments for each shard, sending an Inter-
est for each and concatenating received data in-order until all
data is collected.

3.3.2 Worker Behavior

Upon receipt of a request Interest, a Worker in the cluster
will parse the name and begin a compute task in the back-
ground. The Worker will immediately return an empty Data
to acknowledge the start of the computation process.

Upon receipt of the result Interest, a Worker in the cluster
will look for the result in its result store. By the design of
the worker’s result store, all Interests received should be for a
result which the Worker has. Before the Worker announces the
specific prefix for a result, any Interests for that result name
are returned as a negative acknowledgment by the network;
such Interests do not make their way to any Worker. The
Worker will parse the specific segment requested, and return
an MTU-compatible chunk of the result as the data for the
Interest.

Workers will express Interests for result names during com-
putation of a distributed dataset. This is to abide by the princi-
ple of efficiency; the Worker will perform as few transforma-
tions in the lineage as possible should a path prefix of the trans-
formation lineage exist in the network or in another Worker’s
result store. However, Workers will not express Interests for
request names; workers assigned to compute transformations
on a certain shard should do so by themselves.

4 Implementation

Flint is implemented as a Python 3 package spanning approx-
imately 2,500 lines of code. The package is organized into

modules; certain modules run on nodes assigned to Driver or
Worker roles while other modules are used as utilities or for
cluster management.

While Flint is designed to be run on any containerization
technology or even bare-metal hardware, it is tested on a
Docker cluster managed through either Docker Compose or a
management module utilizing the Python Docker SDK (the
latter allows for more flexibility in configuration and man-
agement). Currently, the cluster design allows for a Driver
to work with up to 200 Workers. The python-ndn library [7]
is used to provide network functionality to the Driver and
Worker as a native NDN SDK.

Nodes in the cluster are designed to connect to any NDN
network (given the authorization as well as the proper certifi-
cates); however, we bundle a local NFD (Named Data Net-
working Forwarding Daemon) [4] instance, configured with
a 5-gigabyte content store (cache) to allow for sufficient in-
network caching capability, emulating real networking hard-
ware.

The Driver and Workers automatically register themselves
to the cluster through the NDN architecture’s hierarchical
named-based routing. For example, upon startup, a Worker
will announce name prefixes to the network for each shard
that it determines itself to have. Thus, there is no need for an
explicit runtime cluster manager. Node health and reachability
are synonymous with the equivalent functions in the routing
plane.

To increase performance and compatibility, the current
dataset processing design for Flint uses a Pandas [9] backend.
Transformation callables (closures) are expressed with Pandas
library calls. Base distributed datasets are stored as flat files
in jsonl format. To distribute the dataset, a bundled utility
shards arbitrarily large files into shards of a certain size and
replication factor to distribute to each Worker.

5 Evaluation

To demonstrate the feasibility of a data-centric paradigm for
distributed computing, we evaluate Flint with microbench-
marks to test the performance of features enabled or enhanced
through the NDN architecture. Unless otherwise stated, the
evaluations are performed on a single machine running ma-
cOS Sequoia 15.3.2 with an ARM 10-core processor, 32 gi-
gabytes of RAM, and solid-state disk, with all nodes running
within their own Docker containers.

In-network Caching: The microbenchmark tests transfer-

5



ring an already-computed 64 MiB distributed dataset from a
result store to the client using two Workers. During the first
pass, the content store of network routers are empty. Then, for
the second pass, all segments of the dataset are pulled into the
content store before the test begins. In both passes, the end-
to-end time from client request to client return is measured
over five trials.

Pass Mean (s) Stdev (s)
Pass 1: content store empty 35.17 2.19

Pass 2: content store has data 15.62 1.11

Thus, when data is stored in the network content store,
the end-to-end latency of retrieving segments decreases by
roughly 50%.

Name Hierarchy and Lineage: This microbenchmark
tests the use of semantically meaningful names to retrieve
intermediate Datasets. When a Worker receives a request for
a Dataset through the naming convention, it can directly de-
termine the necessary lineage of transformations, as well as
the names of intermediate datasets (which may be cached).
Thus, by using the network cache as well as the result store
of other Workers, the Worker may be able to decrease request
latency.

To evaluate this latency decrease, we request a CPU-
intensive series of transformations on a 500,000-row dis-
tributed dataset (approximately 200 MiB), measured over five
trials. The dataset is tested on a cluster of two Workers. When
taken together, the lineages form a computation tree with two
branches and thus a split point. We test the end-to-end latency
for the result to be collected and returned to the client under
two different policies: with automatic caching, which com-
putes the dataset at the split point before the two ends of the
lineage branches, or without such caching.

Configuration Mean (s) Stdev (s)
With auto caching 81.67 0.55
W/o auto caching 93.07 0.07

From the data, we observe a latency decrease with auto-
matic caching, indicating the advantage of exploiting hierar-
chy both in the semantics of distributed dataset processing as
well as content naming.

Data Locality and Availability: Requests for computation
are expressed as Interests at the shard-level and are routed
to a Worker who has the shard. Additional factors are used
to rank different interfaces that can produce data under the
prefix; namely, routing cost and congestion. This prevents any
Worker from being inundated with requests, thus bringing
load-balancing into the network layer.

We utilize this microbenchmark to evaluate how increasing
the replication factor and thus the proportion of data owned by
each Worker affects the performance of Flint. Using a cluster
with 16 Worker nodes, we run two distinct jobs over a 200

Figure 4: Data availability per node versus execution time.

MiB dataset. Job 1 is a data-filtering job, while Job 2 is a
CPU-intensive job. We then measure the time for the request
to be completed and for the result to be returned to the user.
During each trial, we vary the average proportion of data each
Worker node has by changing the replication factor.

The results are shown in Figure 4. Especially for the higher-
intensity Job 2, we see a general negative correlation between
replication factor and latency. We notice that further enabling
data locality by placing the data on more nodes may have a
positive effect on performance.

Interest Volume and Network Performance: Chunk size
is often an important tuning knob for distributed datasets
and file systems. Similarly, shard size in Flint can affect the
performance of the system. Smaller shard sizes increase the
number of request Interests that are sent, as the names are at a
per-shard granularity. Note that the number of result Interests
sent is independent of the chunk size, as result Interests are
split into segments orders of magnitude smaller than chunk
size. However, in Flint, chunk size affects the size of the unit
of work, and thus the difficulty of placement. Utilizing NDN
routing, we compare how the volume of request Interests
(inversely proportional to chunk size) affects performance
using a cluster of 16 Workers performing a computation over
a 500,000-row distributed dataset. During each trial, we vary
the chunk size by 10-megabyte increments and measure the
end-to-end latency.

The results are shown in Figure 5. Generally, tasks for
smaller chunk sizes are easier to place. The architecture of
Flint, while requiring more Interests for smaller chunk sizes,
takes advantage of the correlated ease of placement, providing
higher performance.

6 Discussion

6.1 Performance
Flint’s implementation aims to be robust and relatively perfor-
mant; however, we do not include an explicit quantitative com-

6



Figure 5: Chunk size versus execution time.

parison with Spark and other distributed processing frame-
works. These frameworks are often written in lower-level
languages with bespoke multiprocessing features, resulting
in increased performance and complexity. In the interest of
providing a beginning a discussion about the benefits of a
data-centric architectural paradigm for big data, we provide a
comparison of performance with Flint itself as a baseline in
Section 5. This baseline allows for a more accurate compari-
son of performance benefits.

Most saliently, we observe that utilizing in-network caching
significantly improves the end-to-end data transfer perfor-
mance of Flint. In a larger-scale deployment of a data-centric
distributed processing framework, where data and compute
may be spread in datacenters worldwide or on the edge, such
caching may provide a critical performance benefit without
the need for additional edge infrastructure or a content deliv-
ery network (CDN).

6.2 Comparison to Spark

Flint draws heavily in its design from Spark [11], especially
in its programming model. However, we summarize a few
notable improvements. First, in the common usage of Spark
with the Hadoop Distributed File System (HDFS) [8], schedul-
ing a distributed computation task and achieving data locality
is achieved through a call to getPreferredLocations(),
which incurs the additional round-trip-time of requesting the
best DataNode for a certain partition through the NameNode.
However, in Flint, this additional round-trip-time is eliminated
through the usage of a data-centric network to provide data
locality. The Driver can directly determine a semantic name
for the requested shard (partition) of the dataset and request it
from the network.

Additionally, Spark makes heavy use of caching. A lim-
itation is that cache use is limited to each local node only;
cache is not shared between nodes or in the network. Flint,
however, can utilize both in-network caching as well as the
storage (result store) of other Workers. During computation of

a distributed dataset, Flint checks every prefix of the lineage
to see if a prior result is cached not only on the local node,
but also in the entire cluster.

Similarly to another data-centric application, Kua [5],
Flint’s underlying data store is resilient to failure.1 While
a popular solution for Spark, HDFS, relies on a central Na-
meNode to be available for the functionality of the filesystem.
However, in the case of Kua and Flint, no central node con-
trols the underlying storage. Even if some forwarders in the
network go down, given a sufficient replication factor and
connected Workers, Flint can continue operating, as data is
always located directly through the network.

6.3 Security
Security [12] is a fundamental tenet in NDN. In addition
to data security through signatures, we also explore routing
security through the design of Flint.

We explore an example where malicious bytecode may be
spread to Workers through improper retrieval or verification of
transformations. While the authorized Drivers should be the
only ones able to produce valid object store data, buggy or lazy
Workers may not verify this. To prevent any Worker from re-
ceiving a malicious transformation in the first place, we intro-
duce routing security through signed Prefix Announcements,
a new protocol that increases granularity in the security of for-
warding commands sent to an NDN forwarder. Specifically,
only Drivers who are able to sign a Prefix Announcement
data [6] with a key for Drivers can announce the prefix for
object store data. Routing security is enforced for all entities
and prefixes in the Flint cluster.

7 Conclusion

Our work explores the viability of creating a Spark-like dis-
tributed computation engine over Named Data Networking.
We present a novel cluster architecture that utilizes NDN net-
work features to perform optimizations not possible under a
TCP/IP network architecture. NDN’s hierarchical namespace
allows workers to announce prefixes corresponding to the
data that they have local access to. Drivers can automatically
issue execution requests to workers without needing to know
where they are in another distinct namespace (e.g., IP). The
strength of Flint lies in the NDN architecture, where data
names and Worker names are one.

In-network caching allows many other optimizations.
Transformations at previous (and current) lineage cache points
are stored in-network. Other Workers may see these save
points by expressing an Interest. This affords Workers greater
efficiency by relying on the efforts of other Workers. Trans-
formation bytecode is generated by the client; the driver regis-

1Flint’s data store philosophy shares similarities with Kua’s. Kua is a
distributed object store; we further add a distributed computation system to
the base store.

7



ters its object store prefix to make it available to the workers.
Since transformation bytecode is generally small, in-network
caching greatly reduces the burden of the driver when serving
bytecode. Flint builds on top of the network caching mech-
anism through the object and result stores of the Driver and
Workers respectively.

The built-in forwarding strategy of NDN forwarders auto-
matically implement congestion control–forwarding to differ-
ent paths based on data result metrics. Since NDN forwarding
is closed-loop and stateful, it can automatically detect conges-
tion (i.e., worker overload) and decide to forward computation
requests to a different worker.

7.1 Future Work
Currently, some limitations exist with our work. Like Spark,
the underlying datastore (in this case, Datasets) are read-only.
Allowing clients to modify datasets would require a signifi-
cant change to our design. This would enable clients to have
finer-grained control over computation, but at the potential
cost of complexity.

Another potential area of improvement is Flint’s perfor-
mance. Since this is a proof-of-concept, we did not perform
any benchmarks against existing distributed computation en-
gines. We theorize that we can improve performance by
switching to a more performant language (such as Go) and
taking better advantage of multiprocessing. Additionally, we
hope to adjust our design to be less reliant on retransmitting
interests. Currently, we send out interests with some back-
off to fetch results, waiting on the Worker’s computation to
complete.

We enumerate additional potential improvements to Flint
below:

• Allowing workers to provide negative acknowledgment
to execution requests for finer-grained balancing control
in addition to built-in congestion control.

• An implementation of shared variables (broadcast and
accumulators).

• An agnostic computation model rather than one
only supporting Dataset manipulation through Pandas
DataFrames.

• Support for other data-centric storage such as Kua [5] in
addition to the current proof-of-concept filesystem.

• Implementation of more operation semantics, such as
Spark’s foreach and reduce.

8 Author Contributions

As visible in the commit history of our GitHub repository,
Jacob set up the Docker cluster, NDN wiring, lineage manager,
and programming interface for the client. Paul handled the

cache trigger and distribution of work to the cluster workers
through NDN interests and handlers. Omar did the logic for
executing transformations on the workers and collecting the
results as a DataFrame back at the client.

Omar created a majority of the presentation slides and
contributed to the Introduction and Conclusion sections of the
paper. Paul wrote the Discussion and Design sections, while
Jacob wrote the Background, Implementation, and Evaluation
sections.

References

[1] Alex Afanasyev, Jeff Burke, Tamer Refaei, Lan Wang,
Beichuan Zhang, and Lixia Zhang. A brief introduction
to named data networking. In MILCOM 2018-2018
IEEE Military Communications Conference (MILCOM),
pages 1–6. IEEE, 2018.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. In 6th Sym-
posium on Operating Systems Design & Implementa-
tion (OSDI 04), San Francisco, CA, December 2004.
USENIX Association.

[3] Mu Li, David G Andersen, Alexander Smola, and Kai
Yu. Communication efficient distributed machine learn-
ing with the parameter server. Advances in neural infor-
mation processing systems, 27, 2014.

[4] Named Data Networking Project Team. NFD Devel-
oper’s Guide, July 2021.

[5] Varun Patil, Hemil Desai, and Lixia Zhang. Kua: a
distributed object store over named data networking. In
Proceedings of the 9th ACM Conference on Information-
Centric Networking, pages 56–66, 2022.

[6] Davide Pesavento and Junxiao Shi. Prefix announce-
ment protocol. Technical report, NDN Issue Tracking
(Redmine), 2025.

[7] python-ndn authors. python-ndn documentation, 2023.

[8] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pages 1–10. Ieee, 2010.

[9] Wes McKinney. Data Structures for Statistical Com-
puting in Python. In Stéfan van der Walt and Jarrod
Millman, editors, Proceedings of the 9th Python in Sci-
ence Conference, pages 56 – 61, 2010.

[10] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan
Wang, Beichuan Zhang, and Lixia Zhang. A case for
stateful forwarding plane. Computer Communications,
36(7):779–791, 2013.

8



[11] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In 2nd USENIX workshop
on hot topics in cloud computing (HotCloud 10), 2010.

[12] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry,
Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev,
and Lixia Zhang. An overview of security support in
named data networking. IEEE Communications Maga-
zine, 56(11):62–68, 2018.

9


	Introduction
	Background
	Spark
	Named Data Networking

	Design
	Programming Model
	System Components
	Driver
	Worker

	Dataset Protocol
	Driver Behavior
	Worker Behavior


	Implementation
	Evaluation
	Discussion
	Performance
	Comparison to Spark
	Security

	Conclusion
	Future Work

	Author Contributions

